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We investigate the evolution of a finite release of fluid into an infinite, two-dimensional,
horizontal, porous slab saturated with a fluid of different density and viscosity. The
vertical boundaries of the slab are impermeable and the released fluid spreads as a
gravity current along a horizontal boundary. At early times the released fluid fills the
entire height of the layer, and the governing equation admits a self-similar solution that
is a function of the viscosity ratio between the two fluids. This early similarity solution
describes a tilting interface with tips propagating as x ∝ t1/2. At late times the released
fluid has spread along the boundary and the height of the current is much smaller than
the thickness of the layer. The governing equation simplifies and admits a different
similarity solution that is independent of the viscosity ratio. This late similarity
solution describes a point release of fluid in a semi-infinite porous half-space, where
the tip of the interface propagates as x ∝ t1/3. The same simplification of the governing
equation occurs if the viscosity of the released fluid is much higher than the viscosity
of the ambient fluid. We have obtained an expression for the time when the solution
transitions from the early to the late self-similar regime. The transition time increases
monotonically with increasing viscosity ratio. The transition period during which
the solution is not self-similar also increases monotonically with increasing viscosity
ratio, for mobility ratios larger than unity. Numerical computations describing the
full evolution of the governing equation show good agreement with the theoretical
results. Estimates of the spreading of injected fluids over long times are important
for geological storage of CO2, and for the migration of pollutants in aquifers. In all
cases it is important to be able to anticipate when the spreading regime transitions
from x ∝ t1/2 to x ∝ t1/3.

1. Introduction
Density-driven flows in porous media are common in geological problems and in

engineering applications. In the absence of fluid sinks and sources, such as wells,
buoyancy is the main driving force for subsurface transport. The density differences
may arise due to concentration or temperature gradients within the same fluid or due
to density differences between two immiscible fluid phases. The currents arising from
these density differences are often called gravity currents or gravity tongues. Hydrolo-
gical examples include the evolution of the groundwater table, and the migration of
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pollutants in aquifers (Bear 1972). Water and gas flooding of hydrocarbon reservoirs
are examples of applications in petroleum engineering (Lake 1989).

1.1. Carbon dioxide storage in saline aquifers

This study is motivated by carbon capture and storage, also known as CO2-
sequestration, in deep geological formations. It has been suggested as a way to
reduce greenhouse gas emissions and to mitigate global climate change (Metz et al.
2006). In the temperature and pressure range encountered in geological CO2 storage,
the density of the CO2-vapour is less than the density of the brine (Bachu 2003).
CO2 can be stored in aquifers that are overlain by an impermeable seal that forms
a barrier to upward migration of CO2-vapour. The buoyant CO2-vapour will spread
underneath the seal and along the top of the aquifer as a gravity current. An estimate
of the area invaded by CO2-vapour is of great interest during site selection and
subsequent monitoring efforts.

When CO2 is stored in saline aquifers the injection period may be several decades,
but the CO2-plume continues to migrate for several hundreds or thousands of years.
To study the long-term evolution of the injected fluid we can neglect the details of
the short injection period. The distribution of the fluids at the end of the injection
period simply provides an initial condition for the long-term evolution. Given this
simplification, we are interested in the evolution of a finite release of fluid into a
saturated porous medium, with a particular initial distribution. Owing to the diffusive
nature of the governing equations (see § 2.1) the details of the particular shape of the
initial condition have a small effect on the intermediate and long-term evolution (see
§ 3.3).

1.2. Previous work on hydrostatic sharp interface flows

Similar mathematical models have been developed independently in different
disciplines. We will refer to them as hydrostatic sharp interface flows. They are
based on two main dynamic assumptions: (1) the fluids are completely segregated
and therefore separated by a sharp interface, (2) the pressure distribution in both fluids
is hydrostatic, and the flow is approximately parallel to the boundary of the domain.
The second assumption is analogous to the lubrication approximation in clear fluids
(Huppert 1982). In hydrology this assumption is called Dupuit’s approximation, and
it gives rise to Boussinesq’s equation (Bear 1972), also known as the porous medium
equation. In petroleum engineering this set of assumptions is called the concept of
vertical equilibrium (Yortsos 1995), and gives rise to Dietz’s equation (Dietz 1953).

It is also common to assume an infinitely deep porous half-space. In reality aquifers
and reservoirs often have very high aspect ratios (length : height > 100 : 1), and do not
resemble a half-space. The half-space assumption has been very successful in modelling
the groundwater table, because the viscosity of the surrounding air is negligible. If
the viscosity of the surrounding fluid is not negligible this approximation must be
justified more carefully. In this case the half-space solution is only recovered in the
limit of a very thin gravity current. How thin the gravity current needs to be for this
approximation to become valid depends on the viscosity of the ambient fluid. In the
general case the flow must be considered in the context of a layer of finite thickness,
and the full equations have to be solved.

Similarity solutions can be obtained for both the full equations and the simplified
porous medium equation. Recently both types of solutions have been applied to CO2

storage in saline aquifers. Lyle et al. (2005) model the injection of CO2 into a half-
space, while Nordbotten, Celia & Bachu (2005) consider injection into a layer of finite
thickness. Lyle et al. (2005) note that their scaling laws differ from those obtained
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Figure 1. The evolution of buoyant CO2-vapour (grey) released into a horizontal porous layer
saturated by brine (white). The outward propagating tip of the interface is marked by xo. All
figures are exaggerated in the vertical direction, to make the late solution (d ) visible. In many
situations of interest the width of the invaded region in (a) is several times larger than the
aquifer height.

by Nordbotten et al. (2005). This difference is partly due to the different injection
configuration: Nordbotten et al. (2005) assume injection over the whole depth of the
aquifer, while Lyle et al. (2005) consider injection from a point source at the top of
the aquifer. The difference in the geometry of the domain is probably the main reason
for the difference in the scaling laws. We show that a change in the effective size of
the domain is enough to change the scalings of a gravity current formed from a finite
release of fluid.

2. Problem statement
For two-dimensional problems the similarity solutions to the full equation predicts

that the tip of the interface propagates as x ∝ t1/2, while the similarity solution to
the porous medium equation predicts tip propagation as x ∝ t1/3. The thickness of
a gravity current formed by a finite release of fluid decreases monotonically over
time and the porous medium equation will become applicable at late times. Therefore
the tips of the fluid interface will initially propagate as x ∝ t1/2 and later as x ∝ t1/3

(figure 1). When this transition occurs and how the transition time depends on the
mobility ratio between the fluids are important questions that we address in this paper.

2.1. Governing equation

We consider the flow of fluid 1 with density ρ1 = ρ and viscosity µ1 and of fluid 2 with
density ρ2 = ρ + �ρ and viscosity µ2 in a horizontal porous layer of thickness H and
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Figure 2. The geometry of the porous layer and the variables used in the derivation in § 2.1.

infinite lateral extent (figure 2). We assume that the porous medium is homogeneous
and isotropic with permeability k and porosity φ, and that the top and the bottom
boundaries are impermeable. The fluids are separated by a sharp interface, we denote
the thickness of each fluid by hp[x, t] where p ∈ {1, 2}, so that h1[x, t] + h2[x, t] =H .
We consider an aquifer with a large aspect ratio (length : height � 1), so that we
can assume hydrostatic pressure in both fluids, and the vertical velocity is small. An
asymptotic analysis of this simplification has been presented by Yortsos (1995). In
this case the pressure distribution in the layer is given by

p =

{
pI − gρ(z − h2) for z > h2,
pI − g(ρ + �ρ)(z − h2) for z � h2,

(2.1)

where pI is the unknown pressure at the interface and g is the gravitational
acceleration. The volume flux per unit width qp of phase p is given by Darcy’s law
qp = −kλp∂p/∂x, where we introduce the mobility of phase p defined as λp = k∗

rp/µp .
In this study we assume that the fluids are completely segregated, so that the end-point
relative permeabilities are unity k∗

rp = 1, and the mobility becomes λp = 1/µp . The flow
rate per unit width of phase p is given by Qp = hpqp . Inserting the expression for the
pressure into the flow rates, we obtain

Q1 = −h1kλ1

(
∂pI

∂x
− gρ

∂h1

∂x

)
and Q2 = −h2kλ2

(
∂pI

∂x
+ g (ρ + �ρ)

∂h2

∂x

)
.

In the absence of a source term the global conservation of volume is given by
Q2 + Q1 = 0. Using this constraint we can eliminate ∂pI/∂x from the expressions for
the flow rates and obtain

Q2 = −Q1 = −kg�ρ
h2λ2h1λ1

h2λ2 + h1λ1

∂h2

∂x
.

Both flow rates vanish if the mobility or height of either fluid is zero. It has been shown
that this leads to a finite propagation speed of the fronts (Barenblatt & Vishik 1956).
To obtain an equation for the evolution of the interface, we consider the conservation
of the volume of released fluid p over region �x and time �t as shown in figure 2. The
change in volume �Vp is given by �Vp =�hp�xφ = (Qp|x − Qp|x+�x)�t . Inserting
the expression for Qp into the volume balance and taking limits for small �x and
�t , the equation for the evolution of the interface between the fluids is given by

∂hp

∂t
= κp

∂

∂x

(
hp(H − hp)

hp(Mp − 1) + H

∂hp

∂x

)
, (2.2)
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Figure 3. The geometry of the initial condition and the three associated length scales H , Ld ,
and Lf . A particular initial condition h0[x] and the corresponding idealized step function
initial condition h∗

0[x] are shown. The arrows indicate that the fluid has been injected over the
whole depth of the reservoir.

where we have introduced two parameters, the conductivity of the released fluid
p given by κp = kg�ρλp/φ and the mobility ratio Mp = λp/λq =µq/µp , where the
subscript q denotes the ambient fluid. Note that the parameters are not independent;
λp occurs in both. This choice of parameters allows a simple reduction of (2.2) in the
limits max(hp[x, t]) � H or Mp � 1, as discussed in § 4.1. In these limits the equation
loses its dependence on Mp , but retains the parameter κp . To allow this reduction κp

must be defined in terms of the mobility of the released fluid, and must be independent
of the mobility of the ambient fluid. Equation (2.2) is invariant under the substitution

hp = H − hq, Mp = M−1
q , κp = κqMp =

κq

Mq

. (2.3)

This transformation can be used to obtain a similar expression for the evolution of
the thickness of the ambient fluid hq from (2.2). Equation (2.2) is expressed in terms
of the subscript p only, and we drop it to simplify the notation.

2.2. Initial and boundary conditions

We consider the evolution of the interface after injection has stopped (t � t0). Figure 3
illustrates the initial condition with CO2 injection into a saline aquifer. We assume
that fluid has been injected along the whole depth of the layer, and has formed a
gravity tongue along the upper boundary of the porous layer (Riaz & Tchelepi 2006).
It is common to inject fluid over the whole depth of the aquifer to increase the
injection rate, and to distribute the fluid evenly throughout the depth of the aquifer.
The latter is desirable during CO2 storage, to increase dissolution of the CO2 into the
ambient brine and to increase trapping of CO2 bubbles by capillary forces.

Near the injection site the gas has completely displaced the water over an average
distance of Ld . The lateral extent of the fluid invasion is determined by the viscous
to gravity ratio Rvg = (u/Ld)/(ug/H ) = (uµgH )/(k�ρgLd ), where u is the average
horizontal flow velocity, and ug = k�ρg/µ is a gravitational velocity (for detailed
discussion see Tchelepi 1994). When Rvg is small, gravitational forces dominate the
flow, and a thin gravity tongue forms at the top of the aquifer. When Rvg is large, the
interface advances over the whole depth of the aquifer. Ld increases with time during
the injection period and Rvg generally decreases over time. During CO2 storage large
quantities of fluid are injected and the horizontal velocity u is high and Rvg is initially
large. Initially the interface advances over the whole depth of the aquifer. Over time
Rvg decreases and a gravity tongue will form, leading to the initial condition shown
in figure 3.
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The gas–water interface transitions from h0[xi,0] = H to h0[xo,0] = 0 over a frontal
region of width Lf = xo,0 − xi,0. The volume of gas is given by the integral over the
initial distribution

V = 2φ

∫ xo,0

0

H − h0 dx. (2.4)

The length scale Ld is chosen so that an idealized step function initial profile located
at x = Ld has the same gas volume as the particular initial condition (V = 2φLdH ).
The idealized initial condition is

h∗
0 =

{
H for |x| � Ld ,
0 for |x| > Ld .

This initial configuration imposes three length scales: the layer height H , the average
displacement distance Ld , and the width of the front at the end of injection Lf

(figure 3). The two boundary conditions for (2.2) require that h[x, t] → 0 for |x| → ∞.

3. Self-similar solution at early times
For Lf <Ld the fronts are initially separated, and the finite propagation speed of

the interface tips ensures that the fronts will evolve independently until their inward
propagating tips collide (figure 1b). As a result each front can be analysed in isolation,
and it is convenient to shift it to the origin (x̂ = x − Ld), so that the initial condition
becomes

ĥ0 =

⎧⎨
⎩

H for x̂ � x̂i,0,
h0 [x̂ + Ld] for x̂i,0 < x̂ < x̂o,0,
0 for x̂ � x̂o,0.

The new boundary conditions are

ĥ [x̂ → −∞] = H, ĥ [x̂ → ∞] = 0. (3.1)

The early evolution of the interface is independent of the front separation 2Ld , but
the duration of this early period depends on Ld .

3.1. Dimensional analysis

We follow the general procedure for dimensional analysis given by Barenblatt (1996).
The problem defined above has three dimensions: length L, height H ∗, and time T .
The dimensions of the variables and parameters appearing in (2.2) and the initial
condition are

[ĥ] = [H ] = H ∗, [x̂] =
[
Lf

]
= L, [t] = T , [κ] = L2H ∗−1

T −1, [M] = 1.

The parameters κ , H , and t have independent dimensions and give the length scale
l = (κHt)1/2. We obtain the dimensionless parameters

Π =
ĥ

H
, Π1 = ζ =

x̂

(κHt)1/2
, Π2 = ζf =

Lf

(κHt)1/2
, Π3 = M. (3.2)

The non-dimensional interface height Π can be written as a dimensionless function
ψ of the dimensionless variables Π = ψ[Π1, Π2, Π3]. We seek a similarity solution
for times after the details of the particular initial condition have disappeared. As
time increases Π2 → 0, while Π3 remains finite, and x̂ can always be chosen so
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Figure 4. The similarity solution is shown for different values of M . The variable θ is the
non-dimensional thickness of the released fluid. It is measured from the top of the layer for a
buoyant current.

that Π1 is finite. Following the procedure given by Barenblatt (1996), we assume
complete similarity in the parameter Π2, and we seek a solution of the form
Π = ψ [Π1, 0, Π3] = θ [Π1, Π2]. The expressions for ĥ and x̂ in these variables are

ĥ = Hθ[ζ, M], x̂ = ζ [M](κHt)1/2. (3.3)

Dimensional analysis shows that the tip propagation is proportional to t1/2 when
this scaling analysis is valid. The inner tip position is given by x̂i = ζi [M] (κHt)1/2,
and the outer tip position by x̂o = ζo [M] (κHt)1/2, where ζi and ζo are dimensionless
quantities that depend only on the mobility ratio M . Substituting relationships (3.3)
into (2.2), we obtain a nonlinear ordinary differential equation for θ:

−ζ

2

dθ

dζ
=

d

dζ

(
θ(1 − θ)

θ(M − 1) + 1

dθ

dζ

)
. (3.4)

The mobility ratio M is the only parameter determining the shape of the similarity
solution at early times. The inner and outer boundaries of integration, ζi and ζo, are un-
known, and must be determined as part of the solution. The boundary conditions are:

θ (ζi) = 1,
dθ

dζ

∣∣∣∣
ζi

=
ζiM

2
, θ (ζo) = 0,

dθ

dζ

∣∣∣∣
ζo

= −ζo

2
.

The boundary conditions on θ are the non-dimensional form of (3.1), and the
conditions on dθ/dζ come from inserting the conditions on θ into (3.4). Equation (3.4)
and the boundary conditions are invariant under reflection in ζ , so that if θ1(ζ )
is a particular solution θ1(−ζ ) is also a solution. The physical interpretation of
this reflection is exchanging the position of the fluids on either side of the initially
vertical interface. The evolution of the interface at early times has been reduced to
a nonlinear eigenvalue problem for a second-order ordinary differential equation,
with two unknown eigenvalues and four boundary conditions. The two additional
boundary conditions allow the unique determination of the eigenvalues as a function
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Figure 5. The numerical values for the outer (a) and inner (b) tip positions are shown as a
function of M (solid lines). The scaling laws (3.6) and (3.7) are shown as dashed lines.

of the mobility ratio M . For unit mobility ratio (3.4) reduces to a simpler equation,

−ζ

2

dθ

dζ
=

d

dζ

(
θ(1 − θ)

dθ

dζ

)
, (3.5)

obtained by Huppert & Woods (1995). The solution is symmetric with respect to
the origin, and the eigenvalues become ζi = −ζo = 1. Huppert & Woods (1995) have
obtained the solution θ = (1 + ζ )/2. We note that ζi = −ζo = −1 and θ = (1 − ζ )/2
is also a solution. In the numerical solutions for the case M 	=1 we have chosen
ζi < 0 and ζo > 0 (see figure 4). This choice places the released fluid on the left side
and the ambient fluid on the right side of the tilting interface, and is consistent with
geometry shown in figure 3.

3.2. Numerical solution of eigenvalue problem

The nonlinear eigenvalue problem has been solved numerically for the shape of the
interface and the tip positions as a function of M . We only need to obtain numerical
solutions for M > 1; the corresponding solutions for M < 1 can be obtained from
the transformation (2.3). The eigenvalue problem has been solved using a shooting
method, where we have integrated inward from both boundaries of the domain. The
mismatch of θ and dθ/dζ at the origin was minimized to determine the eigenvalues
for a given value of M . The analytic solution for M = 1 was used as an initial guess
for ζi and ζo, and M was increased incrementally to obtain solutions for M > 1. The
resulting interface shapes are shown in figure 4.

As the mobility ratio increases a gravity tongue develops along one of the horizontal
boundaries. In the limit of M → ∞ the interface appears to approach a vertical line.
The viscosity of the released fluid µp is kept constant, because the similarity variable ζ

depends on µp through κp . Therefore, as we increase M =µq/µp we increase µq , and
in the limit µq → ∞ the ambient fluid becomes immobile and the interface remains
vertical.

Figure 5(a, b) shows the position of the inner and outer tip as a function of
increasing mobility ratio. For large values of M the tip positions follow scaling laws
given by

ζi = −e0.2210M−0.4997 ≈ −1.24√
M

for M > 10, (3.6)
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ζo = e0.8645M−0.4163 ≈ 2.37

M0.42
for M > 200, (3.7)

which are shown as dashed lines in figure 5. The outward propagating non-dimensional
tip position for M < 1 is obtained from the following argument:

x̂o[Mp < 1] = −x̂i[Mq > 1] = −ζi[Mq](κqHt)1/2 = −ζi

[
M−1

p

](κpHt

Mp

)1/2

.

The inward propagating tip xi[Mp < 1] can be obtained by an analogous argument.

The self-similar tip positions for M < 1 are given by ζo[M < 1] = −ζi[M
−1]/

√
M

and ζi[M < 1] = −ζo[M
−1]/

√
M . The position of the outward propagating tip of the

interface at early times is given by

xe
o =

⎧⎨
⎩

Ld + ζo [M] (κHt)1/2 , M � 1,

Ld − ζi[M
−1]

(
κHt

M

)1/2

, M < 1,
(3.8)

where the superscript e is used to indicate the scaling for the early similarity solution.
The position of the inward propagation tip is given by

xi =

⎧⎨
⎩

Ld + ζi[M] (κHt)1/2 , M � 1,

Ld − ζo[M
−1]

(
κHt

M

)1/2

, M < 1.
(3.9)

The numerical values of ζo and ζi can be obtained from figure 5 or from (3.6) and
(3.7) in the appropriate limits.

3.3. Range of validity of the early similarity solution

The similarity solutions described above were obtained under the assumption of
complete similarity in Π2, which corresponds to a step function initial profile (Lf = 0).
Barenblatt & Zeldovich (1972) have shown that similarity solutions are intermediate
asymptotic solutions for a much larger class of initial conditions. Therefore, the
analysis presented above also applies to initial profiles with a finite front width
(Lf 	= 0), for which Π2 	= 0. For this larger class of initial conditions the similarity
solution will be valid after the details of the initial conditions have dissipated, because
Π2 = Lf / (κHt)1/2 approaches zero for Lf � (κHt)1/2. Hence every particular initial
condition will be asymptotic to the similarity solution for

t � te =
L2

f

κH
. (3.10)

This is illustrated for a particular initial condition in figure 6(a). The initial condition
is a ramp defined by

ĥ0 =

⎧⎨
⎩

0, x̂ < −0.5,
x̂ + 0.5, −0.5 � x̂ � 0.5,
1, x̂ > 0.5.

(3.11)

In this case Lf = κ =H = 1, and we have chosen a mobility ratio of M =10. The
partial differential equation (2.2) was solved numerically (see § 5.1), and the solutions
at various times are plotted as dashed lines. The similarity solution obtained from the
eigenvalue problem is shown for comparison. The particular solution is essentially
identical to the similarity solution at t = 10, which is only an order of magnitude
larger than the lower bound te = 1.
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plotted at various times t and compared to the self-similar solution obtained from (3.4) (solid
grey line). (b) Numerical solutions to (2.2) with M = 20 and initial condition (3.14) are shown
for several values of the parameter a in the initial condition and compared to the solution of
(3.4) with a =0 (solid grey line).

For t � te the similarity solution is valid until the inward propagating tip reaches
the origin xi (tb) = 0, where tb is the back-propagation time (figure 1b). Solving (3.9)
for tb we obtain

tb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L2
d

κHζi [M]2
, M � 1,

L2
dM

κHζo[M−1]2
, M < 1.

(3.12)

Hence the early self-similar solution is valid for te � t � tb. We can also define a new
length scale Lb = 2xo(tb), the width of the current at the back-propagation time. For
small M , Lb provides a suitable initial length scale for the late similarity solution in
§ 4. Lb is given by

Lb =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Ld

(
1 +

ζi[M
−1]

ζo[M−1]

√
M

)
, M < 1,

2Ld

(
1 +

ζo[M]

ζi [M]

)
, M � 1.

(3.13)

In some situations the released fluid may not fill the entire depth of the domain. So
that the idealized initial condition is given by

h∗
0 =

{
H − a for |x| � Ld ,

0 for |x| > Ld ,
(3.14)

where a <H is the thickness of the ambient fluid in the injection zone. Figure 6(b)
compares numerical solutions to (2.2), with M = 20 and for various values of a, with
the solution to (3.4), which corresponds to a = 0. Solutions for a 	= 0 are also self-
similar in the early similarity variable, so that the outward propagating tip propagates
as t1/2 for a 	= 0. The position of the tip ζo in self-similar coordinates decreases with
increasing a, but for a/H < 0.2 the difference is less than 10% compared to the values
of ζo given in figure 5(a). The evolution of currents that do not fill the layer entirely
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behave similar to those investigated here, and follow the same early scaling law. The
viscosity of the ambient fluid cannot be neglected even if the released fluid does not
fill the layer entirely. A full investigation of this larger family of similarity solutions
for a 	=0 is beyond the scope of this investigation.

4. Self-similar solution at late times
4.1. Reduction to the porous medium equation

At the back-propagation time tb the interface detaches from one of the horizontal
boundaries, and the thickness of the released fluid h decreases monotonically as a
function of time (figure 1c, d ). At late times h � H , and we expect the solution
for a finite layer to be similar to the solution in a half-space. The equation for the
half-space can be obtained from (2.2) by taking the limit for H → ∞, for finite h and
M , or equivalently taking the limit h → 0, for finite H and M . Consider the limit of
the nonlinear diffusion coefficient in (2.2) for small h, keeping M and H constant:

lim
h→0

h (H − h)

h(M − 1) + H
= h. (4.1)

In this limit (2.2) reduces to the porous medium equation

∂h

∂x
= κ

∂

∂x

(
h

∂h

∂x

)
, (4.2)

which has been studied intensively, and the similarity solution for a finite release of
fluid into a two-dimensional porous half-space was found by Barenblatt (1952).

We expect that the limit (4.1) becomes a good approximation even if h � H is finite,
and (4.2) becomes a good approximation for (2.2) after some time. The parameter M

can vary over several orders of magnitude, and we need to consider its effect on the
validity of approximation (4.1). Consider the approximation in the denominator of
(4.1) for finite but small values of h:

h(M − 1) + H ≈ H.

Large values of M require even smaller values of h to allow this approximation. Since
h is a monotonically decreasing function of time, the half-space approximation will
become valid for all M eventually. In § 5.2 we develop an expression for the onset of
half-space behaviour as a function of M . For small M the half-space approximation
becomes valid very quickly. In the limit of small a mobility ratio we obtain

lim
M→0

h (H − h)

h(M − 1) + H
= h, (4.3)

and (2.2) reduces to (4.2) at all times and for all values of h and H . As mentioned in
§ 1.2, the simplification in this limit is responsible for the success of (4.2) in problems
of unconfined flow, where the ambient fluid is a gas (M � 1).

Equation (4.2) only depends on the mobility of the released fluid λp , not on the
mobility ratio M . From the global conservation of mass Qp + Qq =0, we can obtain
an expression for the Darcy velocity qq in the ambient fluid:

qq = − hpqp

(H − hp)
. (4.4)

For finite hp and qp the flux in the ambient fluid qq becomes negligible as H → ∞.
In contrast to the early evolution, where M is the governing parameter, the problem
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becomes independent of the mobility ratio at late times, because the ambient fluid is
stationary.

4.2. Barenblatt’s solution

In either limit the initial condition for the porous medium equation is a particular gas
distribution h̃[x], with finite width Lb, in a half-space otherwise saturated by water.
The volume of current is given by

V =

∫
h̃[x]dx = 2LdH. (4.5)

A similarity solution in the parameters

h =

(
V 2

κt

)1/3

ϕ[ξ ] and x = ξ (κV t)1/3 (4.6)

has been found by Barenblatt (1952) and is given by

h[x, t] =

⎧⎪⎨
⎪⎩

1

6

(
V 2

κt

)1/3 (
ξ 2
o − x2

(κV t)2/3

)
for |x| � xl

o,

0 for |x| > xl
o.

(4.7)

From the definition of the self-similar coordinate ξ , the tip propagation at late times
is proportional to t1/3, and the front position at late time is given by

xl
o = (9κLdHt)1/3. (4.8)

The superscript l identifies the tip scaling for the late similarity solution. The late
similarity solution depends on the volume of the released fluid V = 2LdH , but it is
independent of the local length scale Lf of the initial front, and the mobility ratio
M . In contrast, the early tip scaling (3.8) is independent of the global length scale Ld ,
but depends on Lf and M .

The similarity solution obtained for the idealized initial condition is an intermediate
asymptotic solution for a larger range of initial conditions with Lb 	= 0, for times
larger than

t � tl = t̃ +
L3

b

2κgLdH
, (4.9)

where t̃ is the time at which (4.1) becomes valid. This lower bound becomes important
when M � 1, and the porous medium equation becomes valid very quickly. In this
case t̃ = tb, and (3.13) is a suitable initial length scale Lb, so that tl becomes

tl =
L2

d

κH

(
8

(
1 +

√
Mζi[M

−1]

ζo[M−1]

)3

− M

ζo[M−1]2

)
. (4.10)

5. Non-self-similar transition
We have obtained a description of the front propagation speed at early times from

the similarity solution describing a tilting interface (§ 3). At late times the governing
equations simplify to (4.2), and the similarity solution of Barenblatt (1952) gives the
propagation speed at late times. The transition from the early to the late similarity
solution will not be self-similar, and must be investigated numerically.

For the numerical solution of (2.2) we have chosen the following non-dimensional
variables: η =h/H , χ = x/Ld , and τ = t/t∗ with the characteristic time t∗ =L2

dκ
−1H −1.
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Substituting these definitions into (2.2), we obtain the following dimensionless
equation:

∂η

∂τ
=

∂

∂χ

(
η(1 − η)

η(M − 1) + 1

∂η

∂χ

)
. (5.1)

The dimensionless mobility ratio M is the only governing parameter. We consider
initial distributions that are symmetric with respect to the origin, so that we only need
to consider the spatial domain [0 a] where a > 0 is chosen larger than the maximum
propagation distance estimated from (4.8). The initial condition in all simulations is
the following step function:

η [χ, τ = 0] =

{
1, χ � 1,
0, χ > 1.

(5.2)

The problem is symmetric with respect to the origin, so that the boundary condition
at the origin is ∂η(0, τ )/∂χ = 0, and the outer boundary condition is η(a, τ ) = 0.

5.1. Finite volume discretization

The spatial domain was divided into N grid cells of width �χ centred at
χi = (i − 1/2) �χ , where i ∈ [1 N]. The temporal domain has been divided into M

constant time steps of size �τ , so that the solution is obtained at times τn = n�τ , for
n ∈ [1 M]. The numerical approximation of the cell average in the ith cell is given by∫ χi+1/2

χi−1/2

η(χ, τn) dx = ηn
i + O(�χ2).

The right-hand side of (5.1) was discretized in divergence form to ensure discrete
conservation (Leveque 2002), and central differences were used for all spatial
derivatives. The time derivative was discretized using the explicit forward Euler
method with a constant time step �τ . The update formula is given by

ηn+1
i = ηn

i − �τ

�χ

(
F n

i+1/2 − F n
i−1/2

)
. (5.3)

The numerical flux function F n
i+1/2 = F[ηn

i , η
n
i+1] is given by

F
[
ηn

i , η
n
i+1

]
= −

ηn
i+1/2

(
1 − ηn

i+1/2

)
ηn

i+1/2 (M − 1) + 1

ηn
i+1 − ηn

i

�χ
, (5.4)

where ηn
i+1/2 = (ηn

i+1 + ηn
i )/2. The numerical results were validated against the early

similarity solution derived in § 3 (see figure 6a).

5.2. Transition time

The two examples in figures 7(a) and 7(b) show the numerical transition from the
early to the late similarity solution. The initial condition is the early similarity solution
at the non-dimensional back-propagation time τb given by

τb =

⎧⎪⎪⎨
⎪⎪⎩

1

ζi [M]2
, M � 1,

M

ζo[M−1]2
, M < 1.

(5.5)

In figure 7(a) the evolution is shown for M =1/2. In this case the curvature of the
early and the late similarity solution is of the same sign. The main difference between
them is the slope at the origin, where the early similarity solution has a finite slope,
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Figure 7. The transition of the numerical solution (light lines) from the early to the late
similarity solution (both heavy lines) is shown in scaled coordinates. (a) The numerical
solution is shown at τ = τb + {1, 4, 10, 30, 100}, where τb = 0.61. (b) The numerical solution is
shown at τ = τb + {101, 102, 103, 104, 105}, where τb = 7.1.

but the late similarity solution has zero slope. In this case the transition period
is relatively short, and the late similarity solution is a good approximation to the
solution for τ > 100. Figure 7(b) shows the transition for the case M = 10. In this
case the curvature of the early and the late similarity solution is of opposite sign. The
numerical solution adjusts very slowly and the transition period is very long.

5.3. Transition of the scaling for the tip position

Figure 8(a–d ) shows the numerical results for the non-dimensional position of the
outward propagating tip χo of the released fluid as a function of non-dimensional
time τ . The figure shows the effect of increasing the mobility ratio M on the tip
propagation and the timing of the transition. The scaling laws for the tip position
obtained from the early and late similarity solutions are also shown. In non-dimen-
sional coordinates these scaling laws (3.8, 4.8) simplify to

χe
o =

{
1 + ζo [M] τ 1/2, M � 1,

1 − ζi[M
−1]τ 1/2M−1/2, M < 1,

(5.6)

χl
o = (9τ )1/3 , (5.7)

respectively. The shifted tip position χo − 1 is plotted as a function of time in
logarithmic axes, so that the early scaling law (5.6) plots as a straight line with slope
1/2. In these variables the late scaling law (5.7) does not plot as a straight line, but
it approaches a straight line with slope 1/3 for large times, where it becomes valid.
The late scaling law is independent of M and therefore the same curve in all four
figures, while the straight line corresponding to the early similarity solution is shifting
downward as M increases. Comparison of the numerical results with the scaling laws
from the early and late similarity solutions leads to the following four observations.

(a) The numerical tip position initially follows the early scaling law χo ∝ τ 1/2, and
then the scaling law for late times χo ∝ τ 1/3.

(b) The transition time τt increases monotonically with increasing M . Comparison
of figures 8(a) and 8(b) shows that this increase is very small for M < 10−1. Figures 8(c)
and 8(d ) show a rapid increase of the transition time for M > 10−1.
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Figure 8. The numerical results for the non-dimensional tip position χo are shown as a
function of non-dimensional time τ , for different mobility ratios M . In all figures the numerical
solution is given by dots (· · ·), the tip scaling from the early similarity solution by a dashed
line (- - -), and the tip scaling from the late similarity solution as a full line (—). (a) τt = 2.0,
τb = 0.1; (b) τt = 2.5, τb = 0.24; (c) τt = 29.3, τb = 1; (d ) τt = 811.3, τb = 7.1.

(c) The transition from the early to the late scaling is short for M ≈ 10−1 (figure 8b),
and increases rapidly for M > 10−1 (figure 8d ).

(d) The tip position follows the early scaling law χo ∝ τ 1/2 even after the early
similarity solution has become invalid at τb (5.5). In figure 8(a–c) the early scaling
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law continues to be valid almost up to τt . This shows that the finite depth of the
layer continues to have a strong effect on the solution, even after the interface has
detached from one of the boundaries.

Although the early and the late scaling behaviour are separated by a transition
period, it is useful to define a dimensionless transition time τt that falls within this
transition period. This transition time defines a lower bound for the validity of the
late similarity solution. The difference between the early and the late scaling law is
given by

f [τ ; M] =
(
χl

o − 1
)

− χe
o , (5.8)

where χl
o is given by (5.7), and χe

o by (5.6). We use the substitution τ = y6 to eliminate
τ 1/2 and τ 1/3 and obtain a cubic in y. Let Mt denote the value of M , where the early
scaling law is tangent to the late scaling law such that f (τ ; Mt ) = 0. For M � Mt

the non-dimensional transition time τt can be defined as the intersection of the early
and late time scaling laws (figure 8c, d ), and is therefore given by the largest real
root of f (τ ; M � 1) = 0. For M < Mt the two scaling laws do not intersect, but the
transition time can be defined as the point of minimal vertical distance between the
two scaling laws (figures 8c and 8d ) given by the local minimum of (5.8). Solving for
the appropriate root and the minimum, we obtain the following expression for the
non-dimensional transition time,

τt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

9ζo [M]6

(
1 + 2 cos

[
π

3
− θ

3

])6

, M � 1,

M3

9ζi[M−1]6

(
1 + 2 cos

[
π

3
− θ

3

])6

, Mt � M � 1,

64M3

9ζi[M−1]6
, M � Mt ,

(5.9)

where θ is the principle argument of the following complex numbers,

θ =

{
Arg[−2 + 3ζo[M]2 + iζo[M]

√
12 − 9ζo[M]], M � 1,

Arg
[
−2M3/2 + 3

√
Mζi[1/M]2 − iζi[1/M]

√
3M(4M − 3ζi[1/M]2)

]
, Mt � M � 1.

Owing to the change in the definition of the transition time at Mt the graph is not
smooth at this point (figure 9). For M <Mt the transition time increases very slowly
with M , while it increases strongly for M � Mt (figure 9). Mt can be obtained by
finding the value of M for which the local minimum of (5.8) is zero, that is,

Mt − 3

4
ζi

[
M−1

t

]2
= 0. (5.10)

This equation must be solved numerically, because ζi[M
−1
t ] is not known analytically,

and we obtain Mt = 0.1839. For large values of M , χo(τt ) � 1 and (5.8) simplifies to f ≈
f̂ = χl

o − χe
o and gives a scaling law for the transition time τt = 0.45M5/2. For small

values of M , (3.9) can be used to simplify (5.9) to obtain a constant τt = 1.96. Equ-
ation (5.9) is complicated to evaluate, and we therefore introduce a simple expression
based on the two limits discussed above and a simple fit for intermediate values:

τt ≈

⎧⎨
⎩

0.45M5/2, 102 < M ,
36.6M3/2, Mt � M � 102,
2, M < Mt .

(5.11)
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Figure 9. Regime diagram for a finite release of fluid into a horizontal porous slab, showing
the non-dimensional time scales obtained in this study, and the shapes of the gravity current as
a function of the mobility ratio M . The shaded region indicates the transition period between
the similarity solutions. The characteristic time to dimensionalize all results is t∗ = L2

dκ
−1H −1.

6. Discussion
We have analysed the evolution of a finite release of fluid into a horizontal porous

medium saturated with an ambient fluid. The released fluid can be miscible or
immiscible with the ambient fluid. The density difference between the fluids is the
only driving force that has been considered. We first summarize our results in a
regime diagram. Then we illustrate the strong effect that the mobility ratio has on
the tip propagation speed, by looking at the effect of switching released and ambient
fluid on the laboratory experiments by Huppert & Woods (1995). Finally we discuss
the implications of this study for CO2 storage in saline aquifers, by considering some
field examples.

6.1. Regime diagram

Figure 9 combines all time scales into a M–τ regime diagram, that determines the
evolution of a finite release of fluid. The only parameter in this problem is the mobility
ratio M =Mp = λp/λq = µq/µp between the released fluid p and the ambient fluid q .
The magnitude of a particular dimensional time scale is given by the characteristic
time t∗ = L2

dκ
−1H −1 formed from the displacement distance Ld , the diffusivity of the

released fluid κ = κp and the height of the layer H . The mobility of the released
fluid λp appears in κp , and κp enters the characteristic time t∗ used for the non-
dimensionalization; hence λp is constant and changes in M are due to changes in λq .
For all finite values of M the evolution can be divided into three dynamic stages: an
early self-similar regime, a transition period, and a late self-similar regime.

After the details of the initial condition have been lost, the interface is asymptotic
to an early similarity solution that corresponds to a tilting interface. The early
similarity variable is ζ = x(κHt)−1/2, so that the non-dimensional tip position is given
by χo ∝ τ 1/2. During this period the left and the right interface evolve independently,
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and the length scale of their separation 2Ld does not appear in the similarity variable.
In this phase both fluids move with non-zero velocity, and therefore the mobility
ratio M determines the shape of the interface. We have not plotted the lower bound
on the onset of the early similarity solution (3.10), because this time scale depends
on the initial width of the front Lf ; in non-dimensional variables it is given by
τe = (Lf /Ld)

2. The early similarity solution ends at the back-propagation time τb,
because inward propagating tips of the two initially separated fronts start to interact
at the origin (figure 1b). Figure 9 shows that τb increases monotonically with time,
and follows simple scaling laws for big and small M . Physically, we can explain the
increase of τb with increasing M by the increasing viscosity of the ambient fluid that
slows down the inward propagating tip of the tilting interface. The period during
which the early similarity solution is valid increases with increasing M , because the
τe 	= τe[M]. As long as Lf 	= 0 there are always values M � Mc such that τe � τb, and
hence the early similarity solution is not realized. Mc is determined by the equation
Lf /Ld =

√
Mc/ζo[M

−1
c ] for Mc < 1; a similar equation can be found for Mc > 1. Even

in the case Lf = 0, the early similarity solution will not be realized in the limit M → 0,
because τb → 0. Figure 8 shows that the scaling law for the non-dimensional tip
position χo ∝ τ 1/2 is valid for a significant time after the early similarity solution itself
has become invalid at τb.

The initial similarity solution is followed by a period where the solution is not
self-similar and must be obtained numerically (figure 7). For M � 1 we can define the
transition period as τb < τ < τl , where τl can be obtained from (4.10). The duration
of the transition period increases as M → 0, because the upper boundary is constant
τl = 8, while the lower boundary is proportional to τb ∝ M1/6. For M > 1 we have no
estimate of the upper boundary of the transition period. The numerical results in
figure 8(b–d ) show that the transition period increases with increasing M . From the
transition of the scaling laws for the tip position we have defined a transition time
τt , which provides a lower bound on the onset of the late similarity solution. Equ-
ation (5.9) or (5.11) shows a rapid increase of τt with increasing M for M >Mt .

After the transition period the late similarity solution becomes valid, because the
released fluid occupies only a small fraction of the height of the aquifer, and (2.2)
reduces to (4.2). Equation (4.2) admits a similarity transformation in the variable
ξ = x/(κV t)−1/3, and the analytic solution has been obtained by Barenblatt (1952). In
contrast to the early similarity solution, this late similarity solution is independent of
the mobility ratio M , and depends on the volume of the current V = 2LdH . In this
limit the velocity of the ambient fluid is negligible, which explains why the problem
is now independent of the mobility of the ambient fluid, and hence the mobility ratio
M . When the late similarity solution is valid, the non-dimensional tip position is given
by χo ∝ τ 1/3. Again the scaling for the tip position becomes valid before the solution
is fully self-similar.

6.2. The effect of switching released and ambient fluids

It is now clear that the mobility ratio has a strong effect on the evolution of the
tip position (figure 9). Switching the released and ambient fluid in the finite release
experiments reported by Huppert & Woods (1995) will illustrate this. They report the
finite release of glycerin into an air-filled Hele–Shaw cell that serves as an analogue for
a two-dimensional horizontal porous slab. The analogous permeability of the Hele–
Shaw cell is k =8.33×10−6 m2, its height is H = 10 cm, the initial width of the released
fluid is Ld = 9 cm, and the interface is vertical, so Lf = 0. The properties of the glycerin
are ρg = 1260 kg m−3 (personal communication by H. Huppert), µg = 8.82 × 10−1 Pa s,
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the properties of air are ρa = 1.23 kgm−3, µa = 1.78 × 10−5 Pa s. The air properties are
taken from Batchelor (1973). For a release of glycerin into an air-filled Hele–Shaw cell,
the mobility ratio is very small, Mg ≈ 2 × 10−5. The non-dimensional time scales are:
τb ≈ 3 × 10−2, τt ≈ 2, and τl ≈ 8. The dimensional time scales are obtained using the
characteristic time t∗ = L2

dκ
−1
g H −1 ≈ 0.03 s, so that tb = τbt

∗ ≈ 10−3 s, tt = τt t
∗ ≈ 0.06 s,

and tl = τlt
∗ ≈ 0.24 s, which is consistent with the observation by Huppert & Woods

(1995) that the current had the shape of the late similarity solution 150 s after the
release.

If, in contrast, the same volume of air is released into a glycerin-filled Hele–Shaw
cell, the mobility ratio is very large, Ma ≈ 5 × 104. The non-dimensional time scales
are: τb ≈ 3.2 × 104, and τt ≈ 2.5 × 1011. The dimensional time scales are given by
the characteristic time t∗ = L2

dκ
−1
a H −1 ≈ 7 × 10−7 s, so that tb = τbt

∗ ≈ 0.02 s and
tt = τt t

∗ ≈ 2 days. Switching the ambient and the released fluid has increased the
transition time between the early and the late similarity solution by many orders of
magnitude. An experiment would have to be run for several days to reach the late
similarity solution in this case. Huppert & Woods (1995) have reported that drag
along the base causes the experimental current to lag behind the theoretical prediction.
If the experiment must be run for such a long amount of time this may be a problem.
On the other hand, the low viscosity of the air current may reduce this problem
and allow experimental confirmation of our theoretical predictions. Lyle et al. (2005)
perform experiments where viscous fluids are injected into a porous medium filled
with air (M � 1). They report good agreement with theoretical models based on the
radial equivalent of (4.2), even when the height of the current is still a significant
fraction of the height of the porous layer. This is not surprising, given our results
that show that (2.2) reduces to (4.2) as M → 0. The example calculation given above
shows that these results cannot be applied to the problem of the release of a mobile
phase into a less mobile phase. We are currently not aware of any experiments where
M > 1.

6.3. CO2 storage in saline aquifers

During CO2 storage in saline aquifers a highly mobile supercritical CO2-rich vapour
phase is released into a storage aquifer saturated by a less mobile aqueous brine. The
mobility ratio is M > 1, and we expect an extended early period where the tip position
is given by x ∝ t1/2. The theory developed above allows us to estimate the duration of
this period tb, and after which time we can expect the late scaling law to hold. Consider
the example of the Sleipner injection site, on the Norwegian continental shelf (Metz
et al. 2006). We assume an injection period t0 = 40 years. The physical properties
of the Utsira formation used for CO2 storage at Sleipner are: height H ≈ 200 m,
permeability k ≈ 3 × 10−12 m2, porosity φ ≈ 0.35. Picking intermediate values from the
range of physical properties for fluids in a shallow cold aquifer, given by Nordbotten
et al. (2005), we set ρc = 710 kg m−3, ρb = 1100 kg m−3, µc =0.05 × 10−3 Pa s, and
µb =1 × 10−3 Pa s, so that Mc = 20. For this case the dimensionless time scales are
given by τb ≈ 14 and τt ≈ 2810. The characteristic time is t∗ = L2

dκ
−1
c H −1, and we

see that both time scales will increase quadratically with the injection distance Ld ,
while they decrease with both increasing H and κc = kg�ρµ−1

c φ−1 = 6.6 × 10−4 m s−1.
Consider the effect of increasing Ld from 1000 to 2000 m: the back-propagation time
tb = t0 + τbt

∗ increases from 43.4 to 53.5 years, and the transition time tt = t0 + τt t
∗

increases from 720 to 2740 years. It is commonly assumed that CO2 needs to be stored
for several thousand years. If this change in the propagation regime is not anticipated
the extent of the plume will be severely overestimated after a few hundred years.



382 M. A. Hesse, H. A. Tchelepi, B. J. Cantwell and F. M. Orr Jr

6.4. Further research

The theory presented above is two-dimensional and therefore an application to
three-dimensional field cases is limited. We are pursuing a similar analysis for a
radially symmetric case. Such an analysis will allow simple estimates of the area
affected by the CO2-plume. The most important physical process that has been
neglected is the trapping of CO2 as residual saturation in the wake of the migrating
plume (Spiteri et al. 2005; Ozah et al. 2005). Residual saturation refers to immobile
disconnected bubbles of CO2-vapour formed by capillary snap-off. This trapping
mechanism reduces the volume of the CO2-plume over time. The same effect is also
important in the migration of non-aqueous phase contaminants in hydrology (Hunt,
Sitar & Udell 1995a; Bear & Ryzhik 1998). We plan to extend the discussion presented
here to a simple model of residual trapping.

7. Conclusion
We have derived the equation governing the flow of two fluids in two-dimensional,

horizontal porous layer. The evolution of a finite release of fluid is divided into three
regimes. The mobility ratio M is the parameter that determines the magnitude of the
non-dimensional time scales separating these regimes.

We have obtained new similarity solutions in the variable ζ = x(κHt)−1/2 that are
valid at early times when the interface is tilting due to a horizontal exchange flow.
These similarity solutions are a strong function of the mobility ratio M . In this regime
the position of the tip of the interface is given by x ∝ t1/2. The numerical solution
follows the early scaling law, for a long time after the interface has detached from one
boundary. This indicates that the finite thickness of the aquifer remains important
for M > 1 and solutions assuming infinite depth are not valid until the current has
become very thin.

In the limits h → 0 and M → 0 the governing equation simplifies to the porous
medium equation. This equation admits a similarity solution in the variable
ξ = x/(κV t)−1/3, where the position of the tip of the interface is given by x ∝ t1/3. We
have obtained an expression for the transition time tt from the t1/2 to the t1/3 scaling.
The transition time tt increases monotonically with M , but it is a weak function of
M for M < 0.18, and increases rapidly for M > 0.18. The two self-similar regimes are
separated by a transition period that is roughly centred on tt . Numerical solutions
to the governing partial differential equation are used to obtain solutions during the
non-self-similar transition period. Numerical results show good agreement with the
early and the late similarity solutions.

During CO2 storage in saline aquifers M ≈ 20, and the transition from the early
to the late scaling is likely to occur within the first thousand years. It is therefore
important to anticipate this change in the propagation regime when estimating the
extent of the CO2-plume.

The authors would like to acknowledge helpful discussions with J. Nordbotten and
H. Huppert. This research was supported by the Global Climate and Energy Project
and the SUPRI-B reservoir simulation affiliates program, at Stanford University.
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